7 research outputs found

    The effects of process variations on performance and robustness of bulk CMOS and SOI implementations of C-elements

    Get PDF
    Advances in semiconductor technology have been driven by the continuous demands of market forces for IC products with higher performance and greater functionality per unit area. To date industry has addressed these demands, principally, by scaling down device dimensions. However, several unintended consequences have undermined the benefits obtained from the advances in technology, firstly, the growing impact of process variations on interconnectivity delay, aggravated by the increase in the amount of interconnectivity as circuit complexity increases. Overall, the difficulty of establishing delay parameters in a circuit is adversely impacting on the attainment of the timing closure for a design. Secondly, the increase in the susceptibility of the circuits , even at ground level, to the effects of soft errors due to the reduction in supply voltages and nodal capacitances, together with the increase in the number of nodes in a circuit as the functionality per unit area increases. The aim of this research has been to model and analyse the reliability of logic circuits with regard to the impact of process variations and soft errors, and to finds ways to minimise these effects using different process technologies such as fully depleted silicon on insulator (FDSOI) and partially depleted silicon on insulator (PDSOI) technologies, together with the implementation of different circuit architectures. In view of the increased susceptibility of logic elements to the effects of process variations and soft errors as device geometries are reduced, a logic element which is not only widely used but also typical to asynchronous design is the Muller C-element, which can be realised in a number of different circuit configurations. The robustness of various C-element configurations implemented in different technologies with regard to the effects of process variations and soft errors was examined using the design of the experiment (DoE) and response surface (RSM) techniques. It was found that the circuits based on SOI technology were more robust compared with bulk silicon technology. On the other hand, from the circuit architecture perspective, the differential logic implementations of C-element were found to be more resilient to the effects of process variation and soft errors in comparison with the other C-element implementations investigated.EThOS - Electronic Theses Online ServiceMutah UniversityGBUnited Kingdo

    The effects of process variations on performance and robustness of bulk CMOS and SOI implementations of C-elements

    Get PDF
    Advances in semiconductor technology have been driven by the continuous demands of market forces for IC products with higher performance and greater functionality per unit area. To date industry has addressed these demands, principally, by scaling down device dimensions. However, several unintended consequences have undermined the benefits obtained from the advances in technology, firstly, the growing impact of process variations on interconnectivity delay, aggravated by the increase in the amount of interconnectivity as circuit complexity increases. Overall, the difficulty of establishing delay parameters in a circuit is adversely impacting on the attainment of the timing closure for a design. Secondly, the increase in the susceptibility of the circuits , even at ground level, to the effects of soft errors due to the reduction in supply voltages and nodal capacitances, together with the increase in the number of nodes in a circuit as the functionality per unit area increases. The aim of this research has been to model and analyse the reliability of logic circuits with regard to the impact of process variations and soft errors, and to finds ways to minimise these effects using different process technologies such as fully depleted silicon on insulator (FDSOI) and partially depleted silicon on insulator (PDSOI) technologies, together with the implementation of different circuit architectures. In view of the increased susceptibility of logic elements to the effects of process variations and soft errors as device geometries are reduced, a logic element which is not only widely used but also typical to asynchronous design is the Muller C-element, which can be realised in a number of different circuit configurations. The robustness of various C-element configurations implemented in different technologies with regard to the effects of process variations and soft errors was examined using the design of the experiment (DoE) and response surface (RSM) techniques. It was found that the circuits based on SOI technology were more robust compared with bulk silicon technology. On the other hand, from the circuit architecture perspective, the differential logic implementations of C-element were found to be more resilient to the effects of process variation and soft errors in comparison with the other C-element implementations investigated.EThOS - Electronic Theses Online ServiceMutah UniversityGBUnited Kingdo

    Indexed-channel estimation under frequency and time-selective fading channels in high-mobility systems

    Get PDF
    Index modulation (IM) techniques have been employed in different communication systems to improve bandwidth efficiency by carrying additional information bits. In high-mobility communication systems and under both time-selective and frequency-selective fading channels with Doppler spread, channel variations can be tracked by employing pilot-aided channel estimation with minimum mean-squared error estimation. However, inserting pilot symbols among information symbols reduces the system's spectral efficiency in pilot-aided channel estimation schemes. We propose pilot-aided channel estimation with zero-pilot symbols and an energy detection scheme to tackle this issue. Part of the information bit-stream is conveyed by the indices of zero-pilot symbols leading to an increase in the system's spectral efficiency. We used an energy detector at the receiver to detect the transmitted zero-pilot symbols. This paper examines the impacts of diversity order on the zero-pilot symbol detection error probability and the mean-squared of error estimation. The impacts of pilot symbols number and the zero-pilot symbol number on the mean-squared error of the minimum mean-squared error (MMSE) estimator and the system error performance are also investigated in this paper

    Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study

    Get PDF
    Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe

    Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe

    Design and analysis of single layer quantum dot-cellular automata based 1- bit comparators

    No full text
    Quantum dot-cellular automata (QCA) technology has recently emerged as a potential candidate for the design of nanometer-scale computational circuits. In digital logic circuits, the comparator is the basic building block for comparing two binary values. This paper presents and implements two 1-bit QCA-based comparator designs. The proposed QCA implementations are compact, require only a single layer and are less complex compared to recently reported designs. The QCADesigner tool has been used to confirm the functional validity of the proposed QCA structures. The simulation results of the proposed comparators have shown considerable improvements compared to their existing counterparts in terms of the number of QCA cells and occupational area requirements in addition to cost and efficient complexity values. Furthermore, all of the proposed structures are dissipating extremely low energy values. Thus, the proposed QCA-based comparators can be viewed as viable options for low power digital applications

    Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Monitoring levels and trends in premature mortality is crucial to understanding how societies can address prominent sources of early death. The Global Burden of Disease 2016 Study (GBD 2016) provides a comprehensive assessment of cause-specific mortality for 264 causes in 195 locations from 1980 to 2016. This assessment includes evaluation of the expected epidemiological transition with changes in development and where local patterns deviate from these trends. Methods We estimated cause-specific deaths and years of life lost (YLLs) by age, sex, geography, and year. YLLs were calculated from the sum of each death multiplied by the standard life expectancy at each age. We used the GBD cause of death database composed of: vital registration (VR) data corrected for under-registration and garbage coding; national and subnational verbal autopsy (VA) studies corrected for garbage coding; and other sources including surveys and surveillance systems for specific causes such as maternal mortality. To facilitate assessment of quality, we reported on the fraction of deaths assigned to GBD Level 1 or Level 2 causes that cannot be underlying causes of death (major garbage codes) by location and year. Based on completeness, garbage coding, cause list detail, and time periods covered, we provided an overall data quality rating for each location with scores ranging from 0 stars (worst) to 5 stars (best). We used robust statistical methods including the Cause of Death Ensemble model (CODEm) to generate estimates for each location, year, age, and sex. We assessed observed and expected levels and trends of cause-specific deaths in relation to the Socio-demographic Index (SDI), a summary indicator derived from measures of average income per capita, educational attainment, and total fertility, with locations grouped into quintiles by SDI. Relative to GBD 2015, we expanded the GBD cause hierarchy by 18 causes of death for GBD 2016. Findings The quality of available data varied by location. Data quality in 25 countries rated in the highest category (5 stars), while 48, 30, 21, and 44 countries were rated at each of the succeeding data quality levels. Vital registration or verbal autopsy data were not available in 27 countries, resulting in the assignment of a zero value for data quality. Deaths from non-communicable diseases (NCDs) represented 72.3% (95% uncertainty interval [UI] 71.2-73.2) of deaths in 2016 with 19.3% (18.5-20.4) of deaths in that year occurring from communicable, maternal, neonatal, and nutritional (CMNN) diseases and a further 8.43% (8.00-8.67) from injuries. Although age-standardised rates of death from NCDs decreased globally between 2006 and 2016, total numbers of these deaths increased; both numbers and age-standardised rates of death from CMNN causes decreased in the decade 2006-16-age-standardised rates of deaths from injuries decreased but total numbers varied little. In 2016, the three leading global causes of death in children under-5 were lower respiratory infections, neonatal preterm birth complications, and neonatal encephalopathy due to birth asphyxia and trauma, combined resulting in 1.80 million deaths (95% UI 1.59 million to 1.89 million). Between 1990 and 2016, a profound shift toward deaths at older ages occurred with a 178% (95% UI 176-181) increase in deaths in ages 90-94 years and a 210% (208-212) increase in deaths older than age 95 years. The ten leading causes by rates of age-standardised YLL significantly decreased from 2006 to 2016 (median annualised rate of change was a decrease of 2.89%); the median annualised rate of change for all other causes was lower (a decrease of 1.59%) during the same interval. Globally, the five leading causes of total YLLs in 2016 were cardiovascular diseases; diarrhoea, lower respiratory infections, and other common infectious diseases; neoplasms; neonatal disorders; and HIV/AIDS and tuberculosis. At a finer level of disaggregation within cause groupings, the ten leading causes of total YLLs in 2016 were ischaemic heart disease, cerebrovascular disease, lower respiratory infections, diarrhoeal diseases, road injuries, malaria, neonatal preterm birth complications, HIV/AIDS, chronic obstructive pulmonary disease, and neonatal encephalopathy due to birth asphyxia and trauma. Ischaemic heart disease was the leading cause of total YLLs in 113 countries for men and 97 countries for women. Comparisons of observed levels of YLLs by countries, relative to the level of YLLs expected on the basis of SDI alone, highlighted distinct regional patterns including the greater than expected level of YLLs from malaria and from HIV/AIDS across sub-Saharan Africa; diabetes mellitus, especially in Oceania; interpersonal violence, notably within Latin America and the Caribbean; and cardiomyopathy and myocarditis, particularly in eastern and central Europe. The level of YLLs from ischaemic heart disease was less than expected in 117 of 195 locations. Other leading causes of YLLs for which YLLs were notably lower than expected included neonatal preterm birth complications in many locations in both south Asia and southeast Asia, and cerebrovascular disease in western Europe. Interpretation The past 37 years have featured declining rates of communicable, maternal, neonatal, and nutritional diseases across all quintiles of SDI, with faster than expected gains for many locations relative to their SDI. A global shift towards deaths at older ages suggests success in reducing many causes of early death. YLLs have increased globally for causes such as diabetes mellitus or some neoplasms, and in some locations for causes such as drug use disorders, and conflict and terrorism. Increasing levels of YLLs might reflect outcomes from conditions that required high levels of care but for which effective treatments remain elusive, potentially increasing costs to health systems. Copyright (C) The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe
    corecore